An Analysis of Jolts
EXperienced on
Amtrak Railways

Trips we took

A.k.a public transport where we scared
unsuspecting commuters with our devices

Specific Railways Studied

1. lllinois Service Line between Chicago & Champaign
e Multiple trips with three or more DAQ devices present

e Primary route; most detailed analysis
2. ltalian Intercity Trains
e For comparison with American railways

3. Hiawatha Line between Chicago & Milwaukee, Wi.

The State of Railways in the United States

e Amtrak: 2,142 railway cars and 425 locomotives

e 21,400 miles within the contiguous United States & Southern Canada.

e Recent years: reputation for being rougher, less efficient and slower than international counterparts
(i.e. European, East Asian railways).

e Conditions of rails: below what American Society of Civil Engineers considers optimal.

e Current annual budget just enough to keep rails safe AMTRAK

Logo Courtesy of National Railroad Passenger Corporation

THE ARDUINO

e Arduino MEGA 2560

o Features 256 kilobytes of volatile flash i A i il mnncnnr i)

il
= R N

memory
o 8 kilobytes of RAM

e Builtin 16 channel 10 bit
Analog-to-Digital Converter (ADC)

e Hardware Serial Peripheral Interface
(SPI)

e Inter-Integrated Circuit communication
(12C) protocol

Ultimate GPS

Can 22 satellites

-165 dBm sensitivity, 10 Hz updates, 66 channels

5V friendly design and only 20mA current draw
Breadboard friendly + two mounting holes

Built-in datalogging

PPS output on fix

Internal patch antenna + u.FL connector for external
active antenna

LSMIDS]

9 DOF sensor:

e 3-axis accelerometer

o Measures gravity
o Informs the user how fast the board is
accelerating in 3D space

e 3-axis magnetometer
o Detects which direction the magnetic north lies
m Done by sensing where the strongest
magnetic force is coming from
e 3-axis gyroscope
o Uses Earth's gravity to measure spin and twist
o Ultimately help determine orientation.

DS3231RIC

e Precision clock
e Coin cell on the back of the sensor

O

The user to take years of data even if the
main power is lost.

e Synchronizes time read outs

o

Matches GPS data with position data

e (Contains an extremely accurate internal
crystal

O

Accounts for drifting caused by external
crystals

INACLY

e A high side DC current sensor
A precision amplifier that measures up
to £3.2 Amps

e Used for power-monitoring related
problems

e Uses I2C to measure both the high side

voltage and DC current draw
o 1% precision

Current §
Sensor ©

nd Sda

0

Ucc Scl Um—-

Breadboarded & PCB Versions of DAQ

https://docs.google.com/file/d/15fJQEtWNv1Vya8PnEKwxLAFdc0SiihCW/preview

Arduino Data Acquisition

Automatically updating filenames
Using Keypad for multiple functions
- Electrical information
- File Closing
- Current Filename
- The Magic Conch --->
- GPS function
- And subsequent issues
Writing to file
- Inserting NaNs when appropriate

https://docs.google.com/file/d/1JlM2QxQcyyV0oNVqA8b5CvHha3dg0xXp/preview

The -Python Sequence-

Processing Phase Operation(s) Filename
I Repair GPS data GPS_repair.py
I1 Organize data into arrays, perform mi- TrainPy3.py

nor calculations, & prepare for mapping in

Tablean

111 Calculations of time-averaged acceleration GPS_calculations.py

& jerk for use in jolt analysis

Table 4: Brief overview of the processing pipeline through which all data collected during both test-runs and Amtrak

rides passes. Note: the filename of step II includes an integer corresponding to the latest version of the program.

GPS -troubles-

Error in GPS Parsing Conversions
caused this pattern to appear in
our maps.

This is why we needed a repair
script.

7
Y

<\

Repairing

- Our GPS gives out values in
DDMM.MMMM, so the minutes are in
decimals.

- Issue was stripping zeros from minute
string when converting from string to
integer. (ex: 4000.0063 would show up
in data as 4000.63)

- Split string at period, and count digits

that remain in the second one
- If less than 4, add appropriate number Us, when we saw the first map that didn’t

of zeros to string look like a glitch in the simulation
- Write to output file

Arrays & Calculations

- Intially read in data with pandas, also
used numpy
- Had to convert DDMM.MMMM values to , ,
longitude = degrees(longitude_raw)
Only degrees (’l) latitude = degrees(latitude_raw)

- Located indices where GPS had values.
- Used this to apply a mask to other arrays
to visualize raw data and interpolate (2)

- Interpolate GPS coordinates using

def degrees(coordinate):

coordinate_mod = coordinate%100
coordinate_floor = coordinate//100

coordinate_degrees = (coordinate_mod/60) + coordinate_floor

return(coordinate_degrees)

lat_index = np.array([index for index,value \

Original and masked millis arrayS (2) 2 in enumerate(latitude_raw) if np.isnan(value) == False])
millis_lat = millis[lat_index]
- Mu|t|p||ed |ongitude by -1 lat_int = np.interp(millis, millis_lat, latitude_stripped)

- Subtract 1 from z acceleration array
- Output to CSV, ready to plot and analyze

Final Averaging and Output

Large amount of small-timestep
acceleration points didn't show us the
bigger picture

Decided to average over a quarter
second to get better idea of rough
patches in track (1)

Inserted “jerk” calculation

- Difference of subsequent acceleration
averages (2)

Output all data to final CSV, ready for
plotting and analyzation of bigger
picture

if(len(row) > lat_index + 2 and line_index > 1):

t_now = float(row[18])
ax_now = float(row[4])
ay_now = float(row[5])
az_now = float(row[6])

ax_sum = ax_sum + ax_now
ay_sum = ay_sum + ay_now
az_sum = az_sum + az_now
ax_number = ax_number + 1

lat_now = float(row[lat_index])
long_now = float(row[long_index])

lat_sum += lat_now
long_sum += long_now
coord_number += 1

if(t_now - t_last_average >= t_bin_width):

ax_average = float(ax_sum) / ax_number
ay_average = float(ay_sum) / ax_number
az_average = float(az_sum) / ax_number
axn = float(ax_number)
h_ax.hfill(ax_average)
h_ay.hfill(ay_average)
h_az.hfill(az_average)
h_num_ax.hfill(axn)

ax_arr[i] = ax_average
ay_arr[i] = ay_average
az_arr[i] = az_average

lat_average = float(lat_sum) / coord_number
long_average = float(long_sum) / coord_number

lat_arr[i] = lat_average
long_arr[i] = long_average

if(ax_number >= 2):

xjerk = (ax_average - last_ax_average)
yjerk = (ay_average - last_ay_average)
zjerk = (az_average - last_az_average)

last_ax_average = ax_average
last_ay_average = ay_average
last_az_average = az_average

h_xjerk.hfill(xjerk)

h_yjerk.hfill(yjerk)
h_zjerk.hfill(zjerk)

jx_arrli] = xjerk

jy_arr[il] = yjerk
jz_arrli] = zjerk
else:
jx_arr[i] = 'NaN'
jy_arr[i] = 'NaN'
jz_arr[i] = 'NaN'
t_arr[i] = t_now

t_last_average = t_now
ax_number = 0

ax_sum = 0

ay_sum = 0

az_sum = 0

coord_number = @
lat_sum = @
long_sum = @

i+=1

/t
(4,3
L

_bin_width
_bin_width
“bin_width

DAQ Synchronization

Acceleration data along x-axis measured on three different boards.

Measure Names
accxA
0.4 |
B accxcC
M accxD
03
0.2

o
[

‘ | i e ‘ =
TARIRATTETTR ',?a'm\" TR (I] AR

o
o

o
N

Acceleration along x-axis (g)
=)
ey

S
w

©
»

-0.5

7600K 7800K 8000K 8200K 8400K 8600K 8800K S000K 9200K 9400K 9600K 9800K 10000K
Milliseconds

Millis vs. accx A, accx Cand acc x D. Color shows details about accx A, accx Cand accx D.

DAQ Synchronization

Acceleration data along x-axis measured on three different boards.

0.04 Measure Names
M accxA
0.02 M accxC
W accxD
0.00
| 1| | |

-0.02
[l

f
[|0f
o0 fL\Jl|”‘-'V e »'i W

| 'M IR W i “ ' ,,,.. "y Ni'l

oos | 'l W

-0.10

Acceleration along x-axis (g)

1.09e+06 1.091e+06 1.092e+06 1.093e+06 1.094e+06 1.095e+06 1.096e+06

Milliseconds

Millis vs. Avg. acc x A, Avg. acc x C and Avg. acc x D. Color shows details about Avg. accx A, Avg. acc x C and Avg. accx D.

Test-Runs - Champaign-Urbana MTD

Sample Acceleration Profile for a DAQ Suspened By Springs (MTD Bus)

aZ

| ‘ ‘“\‘u“}‘ \:‘
0.8 a,

dy

l mm\mmm,

“‘ \FH

Acceleration [g]

Wu'\l[.l M\Wﬂ M(WI|1'|",\|”1W”I‘M llw

e ’H '

W l

4

i

T . T s T
100 150 200 250

time [seconds]

Test-Runs - Champaign-Urbana MTD

Fourier Transform: a,, from MTD Ride w/ Board Suspended from Spring

0.025
M rl M
0.020 AN il M ~‘ "1 M y
4 ‘:‘
= | g f[Hz]
& 0015 f=0.45+0.005[Hz]
=
2
Q
30010
2 0
0.005
0.000 i
T T v T ’ T j v ’ !

0.40 0.80 1.19 1.59 1.99 239 2.79 3.18 3.58 3.98 4.38

Frequency [Hz]

Test-Runs - Champaign-Urbana MTD

MTD Test-Run (22N Illini): Three-Axis Acceleration Profile
0.0 1.0x10° 2.0x10° 3.0x10° 4.0x10°
1;50 T I T l
075
;iq L
K 0.00 [
-0.75
-1.50
. 0.75
i[) L
> 0.00
N -
-0.75
-1.50
075
&D L
B 0.00 [
-0.75
-1.50 -) : -
0.0 1.0x10° 2.0x10° 3.0x10° 4.0x10°
Milliseconds

Test-Runs - Chicago Metra trains

BNSF Outbound from Chicago to Clarendon Hills, II.
2:40pm - 3:25pm
No antenna.
Millis

1,650 2,923,048

Test-Runs - Chicago Metra trains

Metra BNSF Inbound (3/16/2019)
Repaired GPS Data
Board D

Net-Acceleration [g] Millis
0.0436 |
0.2000 1,626 2,428,578
0.4000
0.6000
0.8734

Test-Runs - Chicago Metra trains

Fourier Transform: a,, for Metra Chicago (Inbound) Fourier Transform: a,, for Metra Chicago (Outbound)
0.0008
0.0009
f=024+0.0001[Hz] £ -129+0.03Hs :
[Hz] £ =1.29+0.03[Hz] . £=024+0.001[Hz]
—0.0006 0.0007 f=2.14£0.05[Hz]
e , = 0.0006
= » =
2 = 00005
£ 5
2 0.0004 o 0.0005
54 Q
3
< 0.0004
0.0003
00002 0.0002
0.0001
0.0000 Ty PO REN PN EOE R PR
0.00 0.80 1:59. 2.39 3.18 3.98 0.00 0.80 1.59 2.39 3.18 3.98

Frequency [Hz] Frequency [Hz]

Data Analysis - Characterizing Jolts/Lurches

e Analyze both acceleration & jerk to characterize severity of jolts
e Overall roughness’ of ride characterized w/ RMS of net-acceleration
. da d*C d°F

J= "= as

N
1
oo = o = | 7 3 (6 v)
)

Data Analysis - Characterizing Jolts/Lurches

e Net-acceleration calculated by adding respective x-y-z components in quadrature
e Extremely important to subtract-off the constant 1 [g] of acceleration measured in the
z-direction due to Earth's gravity

e Dilution; washes-out the jolts we are actually interested in

Apnet = aa% + a?% + a%

Amtrak: Chicago to Champaign

Net Acceleration (All Data, Full Track)

O - Indicates a scheduled stop.

Map based on Longitude and Latitude. Color shows A Net (G). Details are shown for Table Name. 5

ltalian Railways

Florence to Rome

" ~ Al I¥\bullll'l\/
\\ "r‘\ . 11‘"‘,_»
Op ¥
a"jn:,
<
’A“v/‘ <
Tuscany o
3 Marche
AT
1
. ?
Umbria o
1o
\‘_‘\\ o '__/
L)
{ "y
£ rN oy
3
¢ \\
7 £ ‘)
LS Abruzzo
Corsica o s
’, s
L \‘~“\\
Vatf $n iy
Ci i o~
I 2 ‘\\\ A “_
ed -t -
Map based on Longitude and Latitude. Color shows Jerk.

ltalian Railways

Champaign to Chicago 3/16 Florence to Rome 3/18
. . Scaled graphs
0s 09 Acceleration: 0-1g
Time: 1000k-4000k
millis
0.7 0.7

Acc

1000K 1500K 2000K 2500K 3000K 3500K 4000K
Millis

1200K 1400K 1600K 1800K 2000K 2200K 2400K 2600K 2800K 3000K 3200K 3400K 3600K 3800K
Millis

References

1.). P. Powell, R. Palacin. Passenger Stability Within Moving Railway Vehicles: Limits on Maximum Longitudinal
Acceleration. Urban Rail Transit (2015) 1(2):95-103. DOI: 10.1007/s40864-015-0012-y.

2. D. Martin, D. Litwhiler. An Investigation of Acceleration and Jerk Profiles of Public Transportation Vehicles.
Pennsylvania State University-Berks. American Society for Engineering Education, 2008.

3. Adafruit Industries. Breakout-board datasheets.

4. American Society of Civil Engineers. 2017 Infrastructure Report Card: Rail. p71 - p75.

