An Analysis of Jolts
EXperienced on
Amtrak Railways




Trips we took

A.k.a public transport where we scared
unsuspecting commuters with our devices




Specific Railways Studied

1. lllinois Service Line between Chicago & Champaign
e Multiple trips with three or more DAQ devices present

e Primary route; most detailed analysis
2. ltalian Intercity Trains
e For comparison with American railways

3. Hiawatha Line between Chicago & Milwaukee, Wi.



The State of Railways in the United States

e Amtrak: 2,142 railway cars and 425 locomotives

e 21,400 miles within the contiguous United States & Southern Canada.

e Recent years: reputation for being rougher, less efficient and slower than international counterparts
(i.e. European, East Asian railways).

e Conditions of rails: below what American Society of Civil Engineers considers optimal.

e Current annual budget just enough to keep rails safe AMTRAK

Logo Courtesy of National Railroad Passenger Corporation




THE ARDUINO

e Arduino MEGA 2560

o Features 256 kilobytes of volatile flash i A i il mnncnnr i)
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memory
o 8 kilobytes of RAM

e Builtin 16 channel 10 bit
Analog-to-Digital Converter (ADC)

e Hardware Serial Peripheral Interface
(SPI)

e Inter-Integrated Circuit communication
(12C) protocol




Ultimate GPS

Can 22 satellites

-165 dBm sensitivity, 10 Hz updates, 66 channels

5V friendly design and only 20mA current draw
Breadboard friendly + two mounting holes

Built-in datalogging

PPS output on fix

Internal patch antenna + u.FL connector for external
active antenna




LSMIDS]

9 DOF sensor:

e 3-axis accelerometer

o Measures gravity
o Informs the user how fast the board is
accelerating in 3D space

e 3-axis magnetometer
o Detects which direction the magnetic north lies
m Done by sensing where the strongest
magnetic force is coming from
e 3-axis gyroscope
o Uses Earth's gravity to measure spin and twist
o Ultimately help determine orientation.




DS3231RIC

e Precision clock
e Coin cell on the back of the sensor

O

The user to take years of data even if the
main power is lost.

e Synchronizes time read outs

o

Matches GPS data with position data

e (Contains an extremely accurate internal
crystal

O

Accounts for drifting caused by external
crystals

INACLY

e A high side DC current sensor
A precision amplifier that measures up
to £3.2 Amps

e Used for power-monitoring related
problems

e Uses I2C to measure both the high side

voltage and DC current draw
o 1% precision
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Breadboarded & PCB Versions of DAQ






https://docs.google.com/file/d/15fJQEtWNv1Vya8PnEKwxLAFdc0SiihCW/preview




Arduino Data Acquisition

Automatically updating filenames
Using Keypad for multiple functions
- Electrical information
- File Closing
- Current Filename
- The Magic Conch --->
- GPS function
- And subsequent issues
Writing to file
- Inserting NaNs when appropriate



https://docs.google.com/file/d/1JlM2QxQcyyV0oNVqA8b5CvHha3dg0xXp/preview

The -Python Sequence-

Processing Phase  Operation(s) Filename
I Repair GPS data GPS_repair.py
I1 Organize data into arrays, perform mi- TrainPy3.py

nor calculations, & prepare for mapping in

Tablean

111 Calculations of time-averaged acceleration  GPS_calculations.py

& jerk for use in jolt analysis

Table 4: Brief overview of the processing pipeline through which all data collected during both test-runs and Amtrak

rides passes. Note: the filename of step II includes an integer corresponding to the latest version of the program.



GPS -troubles-

Error in GPS Parsing Conversions
caused this pattern to appear in
our maps.

This is why we needed a repair
script.
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Repairing

- Our GPS gives out values in
DDMM.MMMM, so the minutes are in
decimals.

- Issue was stripping zeros from minute
string when converting from string to
integer. (ex: 4000.0063 would show up
in data as 4000.63)

- Split string at period, and count digits

that remain in the second one
- If less than 4, add appropriate number Us, when we saw the first map that didn’t

of zeros to string look like a glitch in the simulation
- Write to output file




Arrays & Calculations

- Intially read in data with pandas, also
used numpy
- Had to convert DDMM.MMMM values to , ,
longitude = degrees(longitude_raw)
Only degrees (’l) latitude = degrees(latitude_raw)

- Located indices where GPS had values.
- Used this to apply a mask to other arrays
to visualize raw data and interpolate (2)

- Interpolate GPS coordinates using

def degrees(coordinate):

coordinate_mod = coordinate%100
coordinate_floor = coordinate//100

coordinate_degrees = (coordinate_mod/60) + coordinate_floor

return(coordinate_degrees)

lat_index = np.array([index for index,value \

Original and masked millis arrayS (2) 2 in enumerate(latitude_raw) if np.isnan(value) == False])
millis_lat = millis[lat_index]
- Mu|t|p||ed |ongitude by -1 lat_int = np.interp(millis, millis_lat, latitude_stripped)

- Subtract 1 from z acceleration array
- Output to CSV, ready to plot and analyze



Final Averaging and Output

Large amount of small-timestep
acceleration points didn't show us the
bigger picture

Decided to average over a quarter
second to get better idea of rough
patches in track (1)

Inserted “jerk” calculation

-  Difference of subsequent acceleration
averages (2)

Output all data to final CSV, ready for
plotting and analyzation of bigger
picture

if(len(row) > lat_index + 2 and line_index > 1):

t_now = float(row[18])
ax_now = float(row[4])
ay_now = float(row[5])
az_now = float(row[6])

ax_sum = ax_sum + ax_now
ay_sum = ay_sum + ay_now
az_sum = az_sum + az_now
ax_number = ax_number + 1

lat_now = float(row[lat_index])
long_now = float(row[long_index])

lat_sum += lat_now
long_sum += long_now
coord_number += 1

if(t_now - t_last_average >= t_bin_width):

ax_average = float(ax_sum) / ax_number
ay_average = float(ay_sum) / ax_number
az_average = float(az_sum) / ax_number
axn = float(ax_number)
h_ax.hfill(ax_average)
h_ay.hfill(ay_average)
h_az.hfill(az_average)
h_num_ax.hfill(axn)

ax_arr[i] = ax_average
ay_arr[i] = ay_average
az_arr[i] = az_average

lat_average = float(lat_sum) / coord_number
long_average = float(long_sum) / coord_number

lat_arr[i] = lat_average
long_arr[i] = long_average

if(ax_number >= 2):

xjerk = (ax_average - last_ax_average)
yjerk = (ay_average - last_ay_average)
zjerk = (az_average - last_az_average)

last_ax_average = ax_average
last_ay_average = ay_average
last_az_average = az_average

h_xjerk.hfill(xjerk)

h_yjerk.hfill(yjerk)
h_zjerk.hfill(zjerk)

jx_arrli] = xjerk

jy_arr[il] = yjerk
jz_arrli] = zjerk
else:
jx_arr[i] = 'NaN'
jy_arr[i] = 'NaN'
jz_arr[i] = 'NaN'
t_arr[i] = t_now

t_last_average = t_now
ax_number = 0

ax_sum = 0

ay_sum = 0

az_sum = 0

coord_number = @
lat_sum = @
long_sum = @

i+=1
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DAQ Synchronization

Acceleration data along x-axis measured on three different boards.

Measure Names
accxA
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M accxD
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DAQ Synchronization

Acceleration data along x-axis measured on three different boards.

0.04 Measure Names
M accxA
0.02 M accxC
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Millis vs. Avg. acc x A, Avg. acc x C and Avg. acc x D. Color shows details about Avg. accx A, Avg. acc x C and Avg. accx D.



Test-Runs - Champaign-Urbana MTD

Sample Acceleration Profile for a DAQ Suspened By Springs (MTD Bus)
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Test-Runs - Champaign-Urbana MTD

Fourier Transform: a,, from MTD Ride w/ Board Suspended from Spring
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Test-Runs - Champaign-Urbana MTD

MTD Test-Run (22N Illini): Three-Axis Acceleration Profile
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Test-Runs - Chicago Metra trains

BNSF Outbound from Chicago to Clarendon Hills, II.
2:40pm - 3:25pm
No antenna.
Millis

1,650 2,923,048




Test-Runs - Chicago Metra trains

Metra BNSF Inbound (3/16/2019)
Repaired GPS Data
Board D

Net-Acceleration [g] Millis
0.0436 |
0.2000 1,626 2,428,578
0.4000
0.6000
0.8734



Test-Runs - Chicago Metra trains

Fourier Transform: a,, for Metra Chicago (Inbound) Fourier Transform: a,, for Metra Chicago (Outbound)
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Data Analysis - Characterizing Jolts/Lurches

e Analyze both acceleration & jerk to characterize severity of jolts
e Overall roughness’ of ride characterized w/ RMS of net-acceleration
. da d*C  d°F
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Data Analysis - Characterizing Jolts/Lurches

e Net-acceleration calculated by adding respective x-y-z components in quadrature
e Extremely important to subtract-off the constant 1 [g] of acceleration measured in the
z-direction due to Earth's gravity

e Dilution; washes-out the jolts we are actually interested in

Apnet = aa% + a?% + a%



Amtrak: Chicago to Champaign

Net Acceleration (All Data, Full Track)

O - Indicates a scheduled stop.

Map based on Longitude and Latitude. Color shows A Net (G). Details are shown for Table Name. 5



ltalian Railways

Florence to Rome

" ~ Al I¥\bullll'l\/
\\ "r‘\ . 11‘"‘,_»
Op ¥
a"jn:,
<
’A“v/‘ <
Tuscany o
3 Marche
AT
1
. ?
Umbria o
1o
\‘_‘\\ o '__/
L)
{ "y
£ rN oy
3
¢ \\
7 £ ‘)
LS Abruzzo
Corsica o s
’, s
L \‘~“\\
Vatf $n iy
Ci i o~
I 2 ‘\\\ A “_
ed -t -
Map based on Longitude and Latitude. Color shows Jerk.




ltalian Railways

Champaign to Chicago 3/16 Florence to Rome 3/18
. . Scaled graphs
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Time: 1000k-4000k
millis
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